Heterogeneous LiDAR Dataset for Benchmarking Robust Localization in Diverse Degenerate Scenarios

Zhiqiang Chen1,2, Yuhua Qi1, Dapeng Feng1, Xuebin Zhuang1, Hongbo Chen1, Xiangcheng Hu3, Jin Wu3, Kelin Peng1, Peng Lu2
1Sun Yat-sen University, 2The University of Hong Kong, 3The Hong Kong University of Science and Technology

Abstract

For robotic systems to achieve greater autonomy, advancements in 3D LiDAR SLAM are essential. Despite this, the majority of current public datasets do not adequately reflect environments with geometric degeneracy, which poses challenges for the development and testing of robust SLAM algorithms.

To address this limitation, we have developed GEODE, a dataset designed with diversity in mind, featuring multiple LiDAR sensors and various scenarios. GEODE offers 64 distinct trajectories that span more than 64 kilometers across seven different environments. The meticulous data collection process aimed to introduce real-world GEOmetric DEgeneracy and varying motion conditions, providing a robust testbed for SLAM methods. Our goal is for GEODE to enhance localization accuracy in geometrically complex settings and to drive future advancements in LiDAR-based SLAM technologies.


System Overview

Hardware Photo

GEODE is a groundbreaking dataset designed to enhance the development of LiDAR SLAM algorithms in challenging environments characterized by geometric degeneracy. This dataset stands out due to its incorporation of multiple sensor types and its versatility in operating across different scanning methods and fields of view. To achieve this, we have developed three distinct data acquisition systems, each utilizing a shared IMU and stereo camera but equipped with different LiDAR sensors. Our adaptable setup is designed for easy integration onto various platforms, enabling effective data collection in conditions that often hinder LiDAR-based SLAM performance, such as low geometric features, erratic motion dynamics, and fluctuating environmental factors.

Time Synchronization
Our FPGA-based time synchronization module enables multi-channel output for sensor synchronization.

Furthermore, the dataset includes accurate ground-truth trajectories for each data sequence, as well as ground-truth maps for selected indoor scenarios. The choice of equipment is tailored to the specific scene requirements: we utilize GNSS/INS-RTK for outdoor data collection, the Leica MS60 for indoor settings, Vicon vere2 for flat surface sequences, and the Leica RTC360 for generating ground-truth maps in stairway sequences.

Time Synchronization

Dataset

The GEODE dataset includes three essential attributes:

  • Varied LiDAR Types: The GEODE dataset facilitates LiDAR-based localization with an array of sensors, including both rotating and non-repetitive LiDARs, offering diverse fields of view and scanning configurations.
  • Multi-Degenerate Scenarios: This comprehensive dataset delves into an array of complex geometric scenarios such as flat surfaces, stairways, subway tunnels, rough off-road terrains, inland waterways, urban tunnels, and bridges. It offers valuable insights into the typical challenges encountered by LiDAR technologies and serves as a foundation for advancing algorithmic methods to address these issues.
  • Hardware Photo
  • Diverse Platform Characteristics: Data for the GEODE dataset were gathered using four distinct platforms: a handheld unit, an unmanned ground vehicle (UGV), a sailboat, and a traditional vehicle. Each platform contributes unique motion dynamics, enriching the dataset’s applicability.
  • Hardware Photo

Scenarios

Data format

The GEODE dataset offers raw sensor data and corresponding ROS bag files. The raw data includes images, text files, and binary files for storing point clouds. The images comprise RGB data from a binocular camera, reflectivity images, and depth images from an Ouster radar. IMU data from the Xsens MTi-30 and the radar-integrated IMU are stored in text files, which include the following information: timestamp, roll, pitch, yaw, angular velocities, and linear accelerations. Point cloud data is sourced from Velodyne, Ouster, and other topics, and saved in binary files. Each file is timestamped and contains specific data for each sensor: Velodyne provides [x, y, z, intensity, ring, time]; Ouster includes [x, y, z, intensity, t, reflectivity, ring, ambient, range]; and Livox offers [x, y, z, intensity, tag, line]. For a comprehensive overview of the file structure in the GEODE dataset, please refer to the provided link.

  • GEODE/(Click here to view the file structure of the GEODE dataset)
    • sensor data
      • map_env/sequence_id
      • sequence_id.bag
      • sequence_id.zip
      • LiDAR
        • bin
        • timestamp.bin
        • depth image*
        • timestamp.jpg
        • reflectivity image*
        • timestamp.jpg
      • Camera
        • image_left
        • timestamp.jpg
        • iamge_right
        • timestamp.jpg
      • IMU
      • imu.txt
    • calibration files/
    • device_id.yaml
    • groundtruth/
      • map
      • map_env.las
      • traj
      • map_env.las

We present the ROS Topics along with explanations of each message as follows: rostopic

Download

The dataset comprises raw data, ground truth poses, ground truth maps, and corresponding ROS bag files. These files are accessible for download from Google Drive. For specific sequence downloads of ROS bag files, please refer to the table below. Additional download options will be made available in the future.

Sequence Devices(Platform) Total Size Duration Dist. Difficulty Rosbag
Flat_Surfaces_Smooth γ(Handheld) 770.5 MB 82s 27.77m Hard Rosbag
Flat_Surfaces_Aggressive γ(Handheld) 799.9 MB 88s 80.52m Hard Rosbag
Stairs_Alpha α(Handheld) 3.7 GB 345s 301.06m Medium Rosbag
Stairs_Beta β(Handheld) 11.0 GB 331s 300.15m Easy Rosbag
Stairs_Gamma γ(Handheld) 2.9 GB 390s 300m Medium Rosbag
Shield_tunnel1_gamma γ(Handheld) 4.2 GB 542s 691.85 m Hard Rosbag
Shield_tunnel2_gamma γ(Handheld) 3.5 GB 447s 673.76 m Hard Rosbag
Shield_tunnel3_gamma γ(Handheld) 2.7 GB 338s 586.76 m Hard Rosbag
Shield_tunnel4_gamma γ(Handheld) 2.7 GB 340s 501.44 m Hard Rosbag
Shield_tunnel5_gamma γ(Handheld) 2.0 GB 251s 201.32 m Hard Rosbag
Shield_tunnel6_gamma γ(Handheld) 1.8 GB 224s 205.20 m Hard Rosbag
Shield_tunnel7_beta β(Handheld) 18.1 GB 516s 602.24 m Hard Rosbag
Shield_tunnel8_beta β(Handheld) 20.4 GB 518s 708.28 m Hard Rosbag
Shield_tunnel9_beta β(Handheld) 13.2 GB 373s 525.66 m Hard Rosbag
Shield_tunnel10_beta β(Handheld) 16.4 GB 464s 632.99 m Hard Rosbag
Tunneling_tunnel1_gamma γ(UGV) 1.7 GB 208s 188.31 m Easy Rosbag
Tunneling_tunnel2_alpha α(UGV) 3.6 GB 282s 155.48 m Easy Rosbag
Tunneling_tunnel2_beta β(UGV) 9.8 GB 284s 155.48 m Easy Rosbag
Tunneling_tunnel2_gamma γ(UGV) 2.2 GB 261s 155.48 m Easy Rosbag
Tunneling_tunnel3_alpha α(UGV) 3.2 GB 252s 182.51 m Easy Rosbag
Tunneling_tunnel3_beta β(UGV) 9.1 GB 255s 182.51 m Easy Rosbag
Tunneling_tunnel3_gamma γ(UGV) 2.1 GB 254s 182.51 m Easy Rosbag
Tunneling_tunnel4_alpha α(UGV) 2.7 GB 212s 206.96 m Easy Rosbag
Tunneling_tunnel4_beta β(UGV) 8.3 GB 231s 206.96 m Easy Rosbag
Tunneling_tunnel4_gamma γ(UGV) 1.9 GB 223s 206.96 m Easy Rosbag
Tunneling_tunnel5_alpha α(UGV) 3.3 GB 244s 150.65 m Easy Rosbag
Tunneling_tunnel5_beta β(UGV) 8.0 GB 223s 150.65 m Easy Rosbag
Tunneling_tunnel5_gamma γ(UGV) 2.0 GB 232s 150.65 m Easy Rosbag
Inland_Waterways_Short_Alpha α(Sailboat) 4.8 GB 472s 624.62 m Easy Rosbag
Inland_Waterways_Medium_Alpha α(Sailboat) 9.2 GB 876s 1883.72 m Medium Rosbag
Inland_Waterways_Long_Alpha α(Sailboat) 16.8 GB 1616s 2781.19 m Hard Rosbag
Inland_Waterways_Short_Beta β(Sailboat) 14.9 GB 441s 624.62 m Easy Rosbag
Inland_Waterways_Medium_Beta β(Sailboat) 27.6 GB 812s 1883.72 m Medium Rosbag
Inland_Waterways_Long_Beta β(Sailboat) 54.7 GB 1615s 2781.19 m Hard Rosbag
Inland_Waterways_Short_Gamma γ(Sailboat) 3.0 GB 475s 624.62 m Easy Rosbag
Inland_Waterways_Medium_Gamma γ(Sailboat) 5.5 GB 838s 1883.72 m Medium Rosbag
Inland_Waterways_Long_Gamma γ(Sailboat) 10.8 GB 1656s 2781.19 m Hard Rosbag
Offroad1_alpha α(UGV) 4.6 GB 426s 439.81 m Medium Rosbag
Offroad1_beta α(UGV) 14.5 GB 418s 439.81m Medium Rosbag
Offroad1_gamma γ(UGV) 3.0 GB 484s 439.81m Medium Rosbag
Offroad2_alpha α(UGV) 4.6 GB 427s 680.39m Medium Rosbag
Offroad2_beta β(UGV) 14.9 GB 432s 680.39m Medium Rosbag
Offroad2_gamma γ(UGV) 3.0 GB 421s 680.39m Medium Rosbag
Offroad3_alpha α(UGV) 3.2 GB 302s 469.66m Medium Rosbag
Offroad3_beta β(UGV) 11.2 GB 326s 469.66m Medium Rosbag
Offroad3_gamma γ(UGV) 2.3 GB 322s 469.66m Medium Rosbag
Offroad4_alpha α(UGV) 4.7 GB 445s 751.78m Medium Rosbag
Offroad4_beta β(UGV) 14.7 GB 428s 751.78m Medium Rosbag
Offroad4_gamma γ(UGV) 2.9 GB 403s 751.78m Medium Rosbag
Offroad5_alpha α(UGV) 5.4 GB 506s 838.19m Medium Rosbag
Offroad5_beta β(UGV) 16.5 GB 480s 838.19m Medium Rosbag
Offroad5_gamma γ(UGV) 3.4 GB 478s 838.19m Medium Rosbag
Offroad6_alpha α(UGV) 4.9 GB 455s 455.48m Medium Rosbag
Offroad6_beta β(UGV) 14.3 GB 416s 455.48m Medium Rosbag
Offroad6_gamma γ(UGV) 3.1 GB 437s 455.48m Medium Rosbag
Offroad7_alpha α(UGV) 2.4 GB 219s 302.03m Medium Rosbag
Offroad7_beta β(UGV) 6.3 GB 183s 302.03m Medium Rosbag
Offroad7_gamma γ(UGV) 1.3 GB 184s 302.03m Medium Rosbag
Urban_Tunnel01 α(Vehicle) 3.2 GB 285s 3202.21 m Hard Rosbag
Urban_Tunnel02 α(Vehicle) 3.8 GB 342s 4747.11 m Hard Rosbag
Urban_Tunnel03 α(Vehicle) 3.6 GB 334s 6748.56 m Hard Rosbag
Bridge01 α(Vehicle) 4.1 GB 382s 3968.86 m Hard Rosbag
Bridge02 α(Vehicle) 4.8 GB 472s 7678.28 m Hard Rosbag
Bridge03 α(Vehicle) 3.4 GB 320s 5023.20 m Hard Rosbag
The dataset is available on Google Drive

Data Sequences

Standard Trajectories

flat_surfaces


Shield_tunnel


bridge


Urban_Tunnel


Co-captured Trajectories

Tunneling_tunnel

Inland_Waterways


Offroad



Quantitative Results

rostopic

Localization accuracy: we calculate translation ATE [m] for each sequence.

Citation

@misc{chen2024heterogeneouslidardatasetbenchmarking,
    title={Heterogeneous LiDAR Dataset for Benchmarking Robust Localization in Diverse Degenerate Scenarios}, 
    author={Zhiqiang Chen and Yuhua Qi and Dapeng Feng and Xuebin Zhuang and Hongbo Chen and Xiangcheng Hu and Jin Wu and Kelin Peng and Peng Lu},
    year={2024},
    eprint={2409.04961},
    archivePrefix={arXiv},
    primaryClass={cs.RO},
    url={https://arxiv.org/abs/2409.04961}, 
}